1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* tools/testing/selftests/kvm/include/kvm_util_base.h
*
* Copyright (C) 2018, Google LLC.
*/
#ifndef SELFTEST_KVM_UTIL_BASE_H
#define SELFTEST_KVM_UTIL_BASE_H
#include "test_util.h"
#include <linux/compiler.h>
#include "linux/hashtable.h"
#include "linux/list.h"
#include <linux/kernel.h>
#include <linux/kvm.h>
#include "linux/rbtree.h"
#include <asm/atomic.h>
#include <sys/ioctl.h>
#include "sparsebit.h"
#define KVM_DEV_PATH "/dev/kvm"
#define KVM_MAX_VCPUS 512
#define NSEC_PER_SEC 1000000000L
typedef uint64_t vm_paddr_t; /* Virtual Machine (Guest) physical address */
typedef uint64_t vm_vaddr_t; /* Virtual Machine (Guest) virtual address */
struct userspace_mem_region {
struct kvm_userspace_memory_region region;
struct sparsebit *unused_phy_pages;
int fd;
off_t offset;
enum vm_mem_backing_src_type backing_src_type;
void *host_mem;
void *host_alias;
void *mmap_start;
void *mmap_alias;
size_t mmap_size;
struct rb_node gpa_node;
struct rb_node hva_node;
struct hlist_node slot_node;
};
struct kvm_vcpu {
struct list_head list;
uint32_t id;
int fd;
struct kvm_vm *vm;
struct kvm_run *run;
#ifdef __x86_64__
struct kvm_cpuid2 *cpuid;
#endif
struct kvm_dirty_gfn *dirty_gfns;
uint32_t fetch_index;
uint32_t dirty_gfns_count;
};
struct userspace_mem_regions {
struct rb_root gpa_tree;
struct rb_root hva_tree;
DECLARE_HASHTABLE(slot_hash, 9);
};
enum kvm_mem_region_type {
MEM_REGION_CODE,
MEM_REGION_DATA,
MEM_REGION_PT,
MEM_REGION_TEST_DATA,
NR_MEM_REGIONS,
};
struct kvm_vm {
int mode;
unsigned long type;
int kvm_fd;
int fd;
unsigned int pgtable_levels;
unsigned int page_size;
unsigned int page_shift;
unsigned int pa_bits;
unsigned int va_bits;
uint64_t max_gfn;
struct list_head vcpus;
struct userspace_mem_regions regions;
struct sparsebit *vpages_valid;
struct sparsebit *vpages_mapped;
bool has_irqchip;
bool pgd_created;
vm_paddr_t ucall_mmio_addr;
vm_paddr_t pgd;
vm_vaddr_t gdt;
vm_vaddr_t tss;
vm_vaddr_t idt;
vm_vaddr_t handlers;
uint32_t dirty_ring_size;
/* Cache of information for binary stats interface */
int stats_fd;
struct kvm_stats_header stats_header;
struct kvm_stats_desc *stats_desc;
/*
* KVM region slots. These are the default memslots used by page
* allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
* memslot.
*/
uint32_t memslots[NR_MEM_REGIONS];
};
#define kvm_for_each_vcpu(vm, i, vcpu) \
for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
if (!((vcpu) = vm->vcpus[i])) \
continue; \
else
struct userspace_mem_region *
memslot2region(struct kvm_vm *vm, uint32_t memslot);
static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
enum kvm_mem_region_type type)
{
assert(type < NR_MEM_REGIONS);
return memslot2region(vm, vm->memslots[type]);
}
/* Minimum allocated guest virtual and physical addresses */
#define KVM_UTIL_MIN_VADDR 0x2000
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
#define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
#define DEFAULT_STACK_PGS 5
enum vm_guest_mode {
VM_MODE_P52V48_4K,
VM_MODE_P52V48_64K,
VM_MODE_P48V48_4K,
VM_MODE_P48V48_16K,
VM_MODE_P48V48_64K,
VM_MODE_P40V48_4K,
VM_MODE_P40V48_16K,
VM_MODE_P40V48_64K,
VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
VM_MODE_P47V64_4K,
VM_MODE_P44V64_4K,
VM_MODE_P36V48_4K,
VM_MODE_P36V48_16K,
VM_MODE_P36V48_64K,
VM_MODE_P36V47_16K,
NUM_VM_MODES,
};
#if defined(__aarch64__)
extern enum vm_guest_mode vm_mode_default;
#define VM_MODE_DEFAULT vm_mode_default
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 8)
#elif defined(__x86_64__)
#define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 8)
#elif defined(__s390x__)
#define VM_MODE_DEFAULT VM_MODE_P44V64_4K
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 16)
#elif defined(__riscv)
#if __riscv_xlen == 32
#error "RISC-V 32-bit kvm selftests not supported"
#endif
#define VM_MODE_DEFAULT VM_MODE_P40V48_4K
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 8)
#endif
#define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
#define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
struct vm_guest_mode_params {
unsigned int pa_bits;
unsigned int va_bits;
unsigned int page_size;
unsigned int page_shift;
};
extern const struct vm_guest_mode_params vm_guest_mode_params[];
int open_path_or_exit(const char *path, int flags);
int open_kvm_dev_path_or_exit(void);
bool get_kvm_intel_param_bool(const char *param);
bool get_kvm_amd_param_bool(const char *param);
unsigned int kvm_check_cap(long cap);
static inline bool kvm_has_cap(long cap)
{
return kvm_check_cap(cap);
}
#define __KVM_SYSCALL_ERROR(_name, _ret) \
"%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
#define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
#define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
#define kvm_do_ioctl(fd, cmd, arg) \
({ \
static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd), ""); \
ioctl(fd, cmd, arg); \
})
#define __kvm_ioctl(kvm_fd, cmd, arg) \
kvm_do_ioctl(kvm_fd, cmd, arg)
#define _kvm_ioctl(kvm_fd, cmd, name, arg) \
({ \
int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
\
TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \
})
#define kvm_ioctl(kvm_fd, cmd, arg) \
_kvm_ioctl(kvm_fd, cmd, #cmd, arg)
static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
#define __vm_ioctl(vm, cmd, arg) \
({ \
static_assert_is_vm(vm); \
kvm_do_ioctl((vm)->fd, cmd, arg); \
})
#define _vm_ioctl(vm, cmd, name, arg) \
({ \
int ret = __vm_ioctl(vm, cmd, arg); \
\
TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \
})
#define vm_ioctl(vm, cmd, arg) \
_vm_ioctl(vm, cmd, #cmd, arg)
static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
#define __vcpu_ioctl(vcpu, cmd, arg) \
({ \
static_assert_is_vcpu(vcpu); \
kvm_do_ioctl((vcpu)->fd, cmd, arg); \
})
#define _vcpu_ioctl(vcpu, cmd, name, arg) \
({ \
int ret = __vcpu_ioctl(vcpu, cmd, arg); \
\
TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \
})
#define vcpu_ioctl(vcpu, cmd, arg) \
_vcpu_ioctl(vcpu, cmd, #cmd, arg)
/*
* Looks up and returns the value corresponding to the capability
* (KVM_CAP_*) given by cap.
*/
static inline int vm_check_cap(struct kvm_vm *vm, long cap)
{
int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
return ret;
}
static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
{
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
}
static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
{
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
}
void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
const char *vm_guest_mode_string(uint32_t i);
void kvm_vm_free(struct kvm_vm *vmp);
void kvm_vm_restart(struct kvm_vm *vmp);
void kvm_vm_release(struct kvm_vm *vmp);
int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva,
size_t len);
void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
int kvm_memfd_alloc(size_t size, bool hugepages);
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
{
struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
}
static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
uint64_t first_page, uint32_t num_pages)
{
struct kvm_clear_dirty_log args = {
.dirty_bitmap = log,
.slot = slot,
.first_page = first_page,
.num_pages = num_pages
};
vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
}
static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
{
return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
}
static inline int vm_get_stats_fd(struct kvm_vm *vm)
{
int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd));
return fd;
}
static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
{
ssize_t ret;
ret = read(stats_fd, header, sizeof(*header));
TEST_ASSERT(ret == sizeof(*header), "Read stats header");
}
struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
struct kvm_stats_header *header);
static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
{
/*
* The base size of the descriptor is defined by KVM's ABI, but the
* size of the name field is variable, as far as KVM's ABI is
* concerned. For a given instance of KVM, the name field is the same
* size for all stats and is provided in the overall stats header.
*/
return sizeof(struct kvm_stats_desc) + header->name_size;
}
static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
int index,
struct kvm_stats_header *header)
{
/*
* Note, size_desc includes the size of the name field, which is
* variable. i.e. this is NOT equivalent to &stats_desc[i].
*/
return (void *)stats + index * get_stats_descriptor_size(header);
}
void read_stat_data(int stats_fd, struct kvm_stats_header *header,
struct kvm_stats_desc *desc, uint64_t *data,
size_t max_elements);
void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
size_t max_elements);
static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
{
uint64_t data;
__vm_get_stat(vm, stat_name, &data, 1);
return data;
}
void vm_create_irqchip(struct kvm_vm *vm);
void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva);
int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva);
void vm_userspace_mem_region_add(struct kvm_vm *vm,
enum vm_mem_backing_src_type src_type,
uint64_t guest_paddr, uint32_t slot, uint64_t npages,
uint32_t flags);
void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type);
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
enum kvm_mem_region_type type);
vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
unsigned int npages);
void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
void vcpu_run(struct kvm_vcpu *vcpu);
int _vcpu_run(struct kvm_vcpu *vcpu);
static inline int __vcpu_run(struct kvm_vcpu *vcpu)
{
return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
}
void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
uint64_t arg0)
{
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
}
static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *debug)
{
vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
}
static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
}
static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
}
static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
}
static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
}
static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
}
static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
}
static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
}
static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
}
static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
}
static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
}
static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
}
static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
}
static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
}
#ifdef __KVM_HAVE_VCPU_EVENTS
static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
}
static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
}
#endif
#ifdef __x86_64__
static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
struct kvm_nested_state *state)
{
vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
}
static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
struct kvm_nested_state *state)
{
return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
}
static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
struct kvm_nested_state *state)
{
vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
}
#endif
static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
{
int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd));
return fd;
}
int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
{
int ret = __kvm_has_device_attr(dev_fd, group, attr);
TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
}
int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
uint64_t attr, void *val)
{
int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
}
int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
uint64_t attr, void *val)
{
int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
}
static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr)
{
return __kvm_has_device_attr(vcpu->fd, group, attr);
}
static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr)
{
kvm_has_device_attr(vcpu->fd, group, attr);
}
static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
return __kvm_device_attr_get(vcpu->fd, group, attr, val);
}
static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
kvm_device_attr_get(vcpu->fd, group, attr, val);
}
static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
return __kvm_device_attr_set(vcpu->fd, group, attr, val);
}
static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
kvm_device_attr_set(vcpu->fd, group, attr, val);
}
int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
{
int fd = __kvm_create_device(vm, type);
TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
return fd;
}
void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
/*
* VM VCPU Args Set
*
* Input Args:
* vm - Virtual Machine
* num - number of arguments
* ... - arguments, each of type uint64_t
*
* Output Args: None
*
* Return: None
*
* Sets the first @num input parameters for the function at @vcpu's entry point,
* per the C calling convention of the architecture, to the values given as
* variable args. Each of the variable args is expected to be of type uint64_t.
* The maximum @num can be is specific to the architecture.
*/
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
#define KVM_MAX_IRQ_ROUTES 4096
struct kvm_irq_routing *kvm_gsi_routing_create(void);
void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
uint32_t gsi, uint32_t pin);
int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
const char *exit_reason_str(unsigned int exit_reason);
vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
uint32_t memslot);
vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
vm_paddr_t paddr_min, uint32_t memslot);
vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
/*
* ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
* loads the test binary into guest memory and creates an IRQ chip (x86 only).
* __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
* calculate the amount of memory needed for per-vCPU data, e.g. stacks.
*/
struct kvm_vm *____vm_create(enum vm_guest_mode mode);
struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
uint64_t nr_extra_pages);
static inline struct kvm_vm *vm_create_barebones(void)
{
return ____vm_create(VM_MODE_DEFAULT);
}
static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
{
return __vm_create(VM_MODE_DEFAULT, nr_runnable_vcpus, 0);
}
struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
uint64_t extra_mem_pages,
void *guest_code, struct kvm_vcpu *vcpus[]);
static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
void *guest_code,
struct kvm_vcpu *vcpus[])
{
return __vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, 0,
guest_code, vcpus);
}
/*
* Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
* additional pages of guest memory. Returns the VM and vCPU (via out param).
*/
struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
uint64_t extra_mem_pages,
void *guest_code);
static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
void *guest_code)
{
return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
}
struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
int nr_vcpus);
unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
{
unsigned int n;
n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
#ifdef __s390x__
/* s390 requires 1M aligned guest sizes */
n = (n + 255) & ~255;
#endif
return n;
}
struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
uint64_t end);
#define sync_global_to_guest(vm, g) ({ \
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
memcpy(_p, &(g), sizeof(g)); \
})
#define sync_global_from_guest(vm, g) ({ \
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
memcpy(&(g), _p, sizeof(g)); \
})
/*
* Write a global value, but only in the VM's (guest's) domain. Primarily used
* for "globals" that hold per-VM values (VMs always duplicate code and global
* data into their own region of physical memory), but can be used anytime it's
* undesirable to change the host's copy of the global.
*/
#define write_guest_global(vm, g, val) ({ \
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
typeof(g) _val = val; \
\
memcpy(_p, &(_val), sizeof(g)); \
})
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
uint8_t indent);
static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
uint8_t indent)
{
vcpu_arch_dump(stream, vcpu, indent);
}
/*
* Adds a vCPU with reasonable defaults (e.g. a stack)
*
* Input Args:
* vm - Virtual Machine
* vcpu_id - The id of the VCPU to add to the VM.
* guest_code - The vCPU's entry point
*/
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
void *guest_code);
static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
void *guest_code)
{
return vm_arch_vcpu_add(vm, vcpu_id, guest_code);
}
/* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
uint32_t vcpu_id)
{
return vm_arch_vcpu_recreate(vm, vcpu_id);
}
void vcpu_arch_free(struct kvm_vcpu *vcpu);
void virt_arch_pgd_alloc(struct kvm_vm *vm);
static inline void virt_pgd_alloc(struct kvm_vm *vm)
{
virt_arch_pgd_alloc(vm);
}
/*
* VM Virtual Page Map
*
* Input Args:
* vm - Virtual Machine
* vaddr - VM Virtual Address
* paddr - VM Physical Address
* memslot - Memory region slot for new virtual translation tables
*
* Output Args: None
*
* Return: None
*
* Within @vm, creates a virtual translation for the page starting
* at @vaddr to the page starting at @paddr.
*/
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
virt_arch_pg_map(vm, vaddr, paddr);
}
/*
* Address Guest Virtual to Guest Physical
*
* Input Args:
* vm - Virtual Machine
* gva - VM virtual address
*
* Output Args: None
*
* Return:
* Equivalent VM physical address
*
* Returns the VM physical address of the translated VM virtual
* address given by @gva.
*/
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
return addr_arch_gva2gpa(vm, gva);
}
/*
* Virtual Translation Tables Dump
*
* Input Args:
* stream - Output FILE stream
* vm - Virtual Machine
* indent - Left margin indent amount
*
* Output Args: None
*
* Return: None
*
* Dumps to the FILE stream given by @stream, the contents of all the
* virtual translation tables for the VM given by @vm.
*/
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
virt_arch_dump(stream, vm, indent);
}
static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
{
return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
}
/*
* Arch hook that is invoked via a constructor, i.e. before exeucting main(),
* to allow for arch-specific setup that is common to all tests, e.g. computing
* the default guest "mode".
*/
void kvm_selftest_arch_init(void);
void kvm_arch_vm_post_create(struct kvm_vm *vm);
#endif /* SELFTEST_KVM_UTIL_BASE_H */
|